3 votes

Neural Prosthetics: Stanford Researchers Advance Performance of Thought-Controlled Computer Cursors

http://news.stanford.edu/news/2012/november/thought-control-...

Stanford researchers have designed the fastest, most accurate mathematical algorithm yet for brain-implantable prosthetic systems that can help disabled people maneuver computer cursors with their thoughts. The algorithm's speed, accuracy and natural movement approach those of a real arm.

BY KELLY SERVICK | Courtesy of Stanford School of Engineering

When a paralyzed person imagines moving a limb, cells in the part of the brain that controls movement activate, as if trying to make the immobile limb work again.

Despite a neurological injury or disease that has severed the pathway between brain and muscle, the region where the signals originate remains intact and functional.

In recent years, neuroscientists and neuroengineers working in prosthetics have begun to develop brain-implantable sensors that can measure signals from individual neurons.

After those signals have been decoded through a mathematical algorithm, they can be used to control the movement of a cursor on a computer screen – in essence, the cursor is controlled by thoughts.

The work is part of a field known as neural prosthetics.

More:
http://news.stanford.edu/news/2012/november/thought-control-...



Trending on the Web